VGA Registers / Palette

 Programming the VGA Registers

 by Boone (boone@ucsd.edu), March '94

 The IBM PC has long been slammed by owners of other computers which come

with superior graphics capabilities built right into hardware. The PC is a

strange beast to program in general, and when it comes to graphics the

programmer doesn't get much help from the video hardware. However, there are

quite a few neat tricks you can do using the VGA registers, as I'm sure you're

aware. The trick is knowing just which registers to use and how to use them to

achieve the desired results. In particular, precise timing is necessary to

avoid screen flicker and/or "snow". The registers on your video card are

necessary for just about any communication with the VGA besides basic

reading/writing of pixels. Some of the registers are standard, which are the

ones we will be discussing here. Most SVGA chipsets have their own special

functions associated with different registers for things such as bank

switching, which is part of what makes trying to write SVGA programs so

difficult. The registers are also used to set the various attributes of each

video mode: horizontal and vertical resolution, color depth, refresh rate,

chain-4 mode, and so on. Luckily, BIOS handles all this for us and since we

only need to set the video mode once at program start-up and once at exit, you

should need to mess with these particular functions too much, unless you are

using a special mode, such as mode X. (See the mode X section for more info on

all this.) If you want to experiment with the video mode registers, ftp

yourself a file called TWEAK*.* (my version is TWEAK10.ZIP). For now we'll

just assume the video mode has already been set to whatever mode you wish.

 One of the most common techniques used by game programmers is fade in/out.

A clean fade is simple but very effective. Suprisingly, even big-budget games

like Ultima VII often have a lot of screen noise during their fades. With a

little effort you can easily write your own noise-free fade routines. There's

nothing like giving a professional first impression on your intro screen, since

the fade-in is likely to be the very first thing they see of your program.

 BIOS is much to slow for this timing-critical opperation, so we'll have to

get down and dirty with our VGA card. Fading is a fairly simple process. As

you should know, the VGA palette consists of 256 colors with 3 attributes for

each color: red, green and blue. Every cycle of the fade, we have to go

through all 768 attributes and if it is larger than 0 subtract one. We'll use

regsiters 3C8h and 3C9h for palette opperations. The operation for sending a

palette to the card is straight-forward: send a 0 to port 3C8h and then your

768 byte buffer to port 3C9h. This is good enough for setting the palette at

the start of your program, but of course it has to go in a loop for the fade,

since you'll have to do this 256 times, subtracting one from each non-zero

member of the buffer. The pseudo-code looks something like this:

 constant PALSIZE = 256*3;

 unsigned character buffer[PALSIZE];

 boolean done;

 counter i,j;

 for j = 255 to 0

 {

 for i = 0 to PALSIZE-1

 if buffer[i] > 0

 buffer[i] = buffer[i] - 1;

 output 0 to port 3C8h;

 for i = 0 to PALSIZE-1

 output buffer[i] to port 3C9h;

 }

 Easy enough, right? If you convert this to the language of your choice it

should run fine. (Make sure you have the buffer pre-loaded with the correct

palette, however, or you will get very strange results...) But you'll notice

the "snow" mentioned earlier. Depending on your video card, this could mean

that you see no noise at all to fuzz covering your entire screen. Even if it

look fine on your system, however, we want to make sure it will be smooth on

all setups it could potentially be run on. For that we're going to have to

ask the video card when it's safe to send the palette buffer to the card, and

for that we'll need the retrace register.

 Putting aside palette concerns for a moment, I'll briefly cover the retrace

on your video card. (See the next section of this article for a more in-depth

discussion of this.) Bascially the vertical retrace is a short time in which

the screen is not being updated (from video memory to your monitor) and you can

safely do writes to your video memory or palette without worrying about getting

snow, flicker, tearing, or other unwanted side-effects. This is a pretty quick

period (retrace occurs 60 to 70 times a second) so you can't do too much at

once.

 Returning to our fade: we want to update the palette during the vertical

retrace. The value we want is bit 3 of register 3DAh. While that bit is zero

we're safe to write. The best practice in this case is to wait for the bit to

change to one (screen is being traced) and then the instant it changes to 0,

blast all our new video info to the card. It won't be necessary in this case

since all we are doing is fading the palette and then waiting for the next

retrace, but if you're doing animation or playing music at the same time

you'll want to include this extra bit of code as a safety net. Otherwise you

might detect the 0 in the refresh bit at the very last instant of the retrace

and end up writing while the screen is being traced. The pseudo-code now goes

like this:

 for j = 255 to 0

 {

 for i = 0 to PALSIZE-1

 if buffer[i] > 0

 buffer[i] = buffer[i] - 1;

 while bit 3 of port 3DAh is 0

 no opperation;

 while bit 3 of port 3DAh is 1

 no opperation;

 output 0 to port 3C8h;

 for i = 0 to PALSIZE-1

 output buffer[i] to port 3C9h;

 }

 That's it! All that's left is for you to implement it in your favorite

language. However, I can hear the cries right now: "Code! Give us some real

assembly code we can use!" I'm reluctant to provided it as this is the exact

sort of thing that is easy to cut and paste into your program without knowing

how it works. However, I'll give you the unoptimized main loop in 80x86

assembly as this may be clearer to you that my explanation or pseudo-code. Two

things to remember about this code: it is optimized enough to be smooth on any

video card (or any that I've seen, anyway) assuming that the fade is the _only_

thing going on. There's some other things you may want to change if you plan

to say, play music during this process. Secondly, you'll need to have the

current palette loaded into the buffer beforehand. You could read it from the

VGA card using either registers or BIOS, but this is both slow and (in my

oppinion) sloppy coding. You should *never* ask the video card about anything

(excluding retrace) that you could keep track of yourself. In the case of the

palette, you probably already loaded it from disk anyway, or if you are using

the default palette <cough, gag, choke> just read the values once and store

them in your executable or in a resource file.

 palbuf DB 768 DUP (?)

 fadecnt DW 040h

; At this point, you should:

; 1) have the video mode set

; 2) have palbuf loaded with the current palette

; 3) have something on the screen to fade!

fadeloop:

 xor al,al ; used for comparisons and port 3D8h

 mov cx,768 ; loop counter

 mov si,offset palbuf ; save palette buffer in si

decloop:

 mov dl,[si] ; put next pal reg in dx

 cmp al,dl ; is it 0?

 je next ; nope...

 dec dl ; yes, so subtract one

 mov [si],dl ; put it back into palette buffer

next:

 dec cx ; decrement counter

 inc si ; increment our buffer

 cmp cx,0

 jne decloop ; not done yet, so loop around

 mov cx,768 ; reset for palette output

 sub si,768 ; reset palbuf pointer

 mov dx,03c8h

 out dx,al ; inform VGA of palette change

 inc dx ; DX = 3C8h + 1 = 3C9h

 mov ch,02h ; do outter loop 2 times

 mov dx,03dah ; prepare refresh register

 mov bx,03c9h ; prepare palette reg (for quick loading)

 cli ; disable interrupts!

outloop:

 mov cl,80h ; do inner loop 128 times

 in al,dx ; wait for current retrace to end

 test al,08h

 jnz $-5

 in al,dx ; wait for current screen trace to end

 test al,08h

 jz $-5

 mov dx,bx ; load up the palette change register

innerloop:

 mov al,[si] ; load next byte of palbuf

 out dx,al ; send it to the VGA card

 dec cl ; decrement counter

 inc si ; increment palbuf pointer

 cmp cl,0

 jne innerloop ; loop while not done

 dec ch ; decrement outer loop counter

 cmp ch,0

 jne outloop ; loop while not done

 sti ; restore interrupts

 mov ax,fadecnt ; entire palette has been sent

 dec ax ; so check fade loop

 mov fadecnt,ax

 cmp ax,0 ; ready to quit?

 jne fadeloop ; nope, keep fading!

 I should add a few comments about this code segment. First of all, it

assumes you want to fade every color all the way down. You may only want to

fade certain sections of the palette (if your screen was only using a certain

number of colors) or maybe your palette is low-intensity so you don't need to

go the full 256 loops to get every color down to 0. It also goes by ones, so

if you want a faster fade you can have it subtract two from each attribute.

If you want to fade to a certain color other than black (for instance, fade to

red such as the "getting hit" effect in Doom), you'll need to check if each

attribute is above or below your target color and increment or decrement

accordingly. Also, you may have noticed something in the code absent from the

pseudo-code: it only sends 128 colors to the card each retrace! This is

because if you use all 256 the next retrace may start before you get all colors

sent to the video card, thanks to the unoptimized code. Some recommend as

little as 64 colors per retrace, however I've found 128 to be okay and

certainly much faster. The above code works for any VGA-equiped machine,

regardless of processor, but you'll probably want to compress all the IN and

OUT loops into REP INSB/OUTSB, REP INSW/OUTSW, or REP INSD/OUTSD instructions

depending upon the minimum processor requirement for your game/demo.

 I won't describe fading in since it's the same sort of thing, and I'm sure

you can figure it out once you know how to use the registers themselves. It's

a little more complicated since you need a second buffer of target values for

your attributes, but otherwise quite similar.

 Next up is vertical retrace. This is simply one of many read registers on

your VGA, but it happens to be one of the most useful for animation and palette

fades (as shown above). Here's a quick rundown of what exactly the vertical

retrace is, and why it's useful.

 There's an electron gun in the back of your monitor that keeps the pixels

"refreshed" with their correct values every 1/60th of a second or so. It fires

electrons at each pixel, row by row. The horizontal retrace is the time it

takes it to return from the right side of the screen after it has traced a row.

This is a very short time and I wouldn't worry about that too much right now,

as it is only useful for very specialized (and quite tricky) hardware effects.

More useful, however, is the vertical retrace which occurs when the electron

gun reaches the bottom of the screen (one entire screen traced) and it returns

diagonally to the upper-right hand corner of the screen. During this time you

are free to update anything you like having to do with video with no noise or

interference (since nothing on the screen is being updated). This is a fairly

short amount of time, though, so whatever you want to do you better do it

quickly. For animation, you'll usually want to keep a second buffer in main

memory (remember that video RAM is quite slow compared to main RAM) which you

can use to write your animations to. When the vertical retrace occurs, you'll

want to blast the entire thing to the VGA as quickly as possible, using a

memory copy instruction. You can find more on this in articles which cover

animation.

 Lastly I'll briefly describe the VGA mode-set registers. There are quite a

number of them and for the most part they're pretty boring. By sending

different values to these registers you can achieve the various video modes

that your card is capable of. These registers set values such as horizontal

and vertical resolution, retrace timing, addressing modes, color depth, timing,

and other fun stuff. The truth is that it's easier and just as effective to

let the BIOS (gasp!) handle setting the screen mode for you, particularly since

most games use standard modes such as 320x200 anyway. At the very least you

can let BIOS set the mode to begin with and then just modify the registers to

"tweak" the mode the way you want it. Any of these non-BIOS modes are

generally refered to as mode X. I don't want to go deep into detail on the

setting and usage of mode X because there is already so much info availible on

the topic. Check out the Mode X Faq (regularly posted in comp.sys.ibm.pc.demos

and rec.games.programmer), Micheal Abrash's collumn in Dr. Dobb's and his

X-sharp library, or the section on mode X in the PC-GPE.

 One mode register I'll cover quickly is the chain-4 enable/disable. A lot

of programmers seem to have trouble visualizing what this thing does exactly.

Bit 3 of port 3C4h (index 4) controls chain-4 mode. Normally it is on. This

allows fast linear addressing of the bytes in video memory, which is the way

you are probably used to addressing them. For example, to change the second

pixel on the screen to a certain color, you simply write the value to address

A000:0001. With chain-4 disabled (the main feature of mode X besides better

resolution) A000:0000 refers to the first pixel in the upper-left corner of

your screen, A000:0001 refers to the fourth pixel, A000:0002 to the eight pixel

and so on. The odd pixels are accessed by changing the write plane. Since

there are four planes, you effectively get an extra two bits of addressing

space, boosting the total bit width for your pixel addressing from 16 to 18.

Standard chain-4 four only allows access to 64K of memory (2^16) while

disabling this feature gives you the full 256K (2^18) of memory to work with.

The disadvantage, of course, is that pixel writes are slower due to the port

writes required to access odd pixels. How can this be an advantage? For one

thing, you can write four pixels at a time as long as they are all the same

color - handy for single-color polygons, as in flight simulators. Secondly,

you get four times as much memory. This allows you to have higher resolutions

without bank switching, or scroll the screen using hardware scrolling, or do

page flipping for smooth animation. And since you can change the resolution,

you can give yourself a sqaure aspect ration (320x240) which is better for

bitmap rotations and the like. But remember that it can be slower for

bitmapped graphics because you have to do at least four writes to the card (to

change planes) in order to copy bitmaps from main RAM to video memory. Don't

use mode X just because you think it's "cool"; make sure you have a good reason

for wanting to use it in your program, or otherwise you're wasting a lot of

effort for no reason.

 Now, I'm sure you want me to continue until I divulge all the secrets of the

VGA register to you - but, I only have some much time and space. Besides, I

still haven't uncovered all of their mysteries and capabilities myself.

However, below is a list of the registers which you may want to play with for

various effects. The following list was posted on rec.games.programmer by

Andrew Bromage (bromage@mundil.cs.mu.OZ.AU), so thanks to him for posting in to

begin with.

 That's it for this article and I hope it helped you understand your VGA card

a little better. If not, re-read it, and try writing your own programs which

use the registers. The only way to really understand it (as with most things)

is to get some hands-on experience.

 If you've got any questions, comments, flames, or corrections related to

this document or game programming/design in general, feel free to post an

article in rec.games.programmer (in case you haven't noticed by now, I hang out

there regularly) or send mail to boone@ucsd.edu.

Here's the list. Have fun...

 Documentation Over the I/O Registers for Standard VGA Cards

 Documentated by Shaggy of The Yellow One

 Email: D91-SJD@TEKN.HJ.SE

Feel free to spread this to whoever wants it.....

--

Port-Index: - Port: Write/03c2h Read/03cch

usage: d7 Vertical sync polarity

 d6 Horizontal sunc polarity

 d5 Odd /even page

 d4 Disable video

 d3 Clock select 1

 d2 Clock select 0

 d1 Enable/Disable display RAM

 d0 I/O address select

Description: Sync polarity: Bits are set as below for VGA displays

 that use sync polarity to determine screen resolution.

 Many newer multiple frequency displays are insensitive

 to sync polarity

 d7 d6 Resolution

 0 0 Invalid

 0 1 400 lines

 1 0 350 lines

 1 1 480 lines

 I/O address select: When set to zero, selects the

 monochrome I/O address space (3bx). When set to one,

 it selects the color I/O address space (3dx)

--

Port-Index: - Port: 03c2h ; read only

usage: d7 Vertical Retrace Interrupt pendling

 d6 Feature connector bit 1

 d5 Feature connector bit 0

 d4 Switch sense

 d0-d3 Unused

Description: d7 uses IRQ2

--

Port-Index: - Port: 03bah,03dah ; read only

usage: d3 Vertical retrace

 d0 Horizontal retrace

--

Port-Index: - Port: 03c3h,46e8h

usage: d7-d1 Reserved

 d0 VGA enable/disable (03c3h only)

Description: Disables access to display memmory and the other

 VGA's ports

--

Port-Index: 00h Port: 03d4h, 03b4h

usage: Horizontal total

Description: Total number of characters in horizontal scan minus

 five (including blanked and border characters)

--

Port-Index: 01h Port: 03d4h, 03b4h

usage: Horizontal display enable

Description: Total number of characters displayed in horizontal

 scan minus one.

--

Port-Index: 02h Port: 03d4h, 03b4h

usage: Start horizontal blanking

Description: Character at which blanking starts

--

Port-Index: 03h Port: 03d4h, 03b4h

usage: End horizontal blanking

 d7 Test

 d6 Skew control

 d5 Skew control

 d0-d4 End blanking

Description: End blanking: is five LSB bits of six-bit value,

 which define the character at which blanking stops.

 The MSB bit of this value is in register index 5.

--

Port-Index: 04h Port: 03d4h, 03b4h

usage: Start horizontal retrace

Description: Character at which horizontal retrace starts

--

Port-Index: 05h Port: 03d4h, 03b4h

usage: End horizontal retrace

 d7 End horizontal blanking bit 5

 d6 Horizontal retrace delay

 d5 Horizontal retrace delay

 d0-d4 End horizontal retrace

Description: End horizontal retrace: defines the character at

 which horizontal retrace ends

--

Port-Index: 06h Port: 03d4h, 03b4h

usage: Vertical total

Description: Total number of horizontal scan lines minus two

 (including blanked and border characters). MSB bits

 of this value are in register index 7

--

Port-Index: 07h Port: 03d4h, 03b4h

usage: Overflow register

 d7 Vertical retrace start (bit 9)

 d6 Vertical display enable end (bit 9)

 d5 Vertical total (bit 9)

 d4 Line compare (bit 8)

 d3 Start vertical blank (bit 8)

 d2 Vertical retrace start (bit 8)

 d1 Vertical display enable end (bit 8)

 d0 Vertical total (bit 8)

--

Port-Index: 08h Port: 03d4h, 03b4h

usage: Preset row scan

 d7 Unused

 d6 Byte panning control

 d5 Byte panning control

 d0-d4 Preset row scan

Description: Byte panning control: is used to control byte

 panning. This register together with attribute

 controller register 13h allows for up to 31 pixels of

 panning in double word modes

 Preset row scan: Which character scan line is the

 first to be displayed

--

Port-Index: 09h Port: 03d4h, 03b4h

usage: Maximum scan line/Character height

 d7 double scan

 d6 bit d9 of line compare register

 d5 bit d9 of start vertical blank register

 d0-d4 Maximum scan line

Description: d0-d5=Character height-1, only in textmodes

--

Port-Index: 0ah Port: 03d4h, 03b4h

usage: Cursor start

 d7,d6 Reserved (0)

 d5 Cursor off

 d4-d0 Cursor start

Description:

--

Port-Index: 0bh Port: 03d4h, 03b4h

usage: Cursor end

 d7 reserved

 d6,d5 Cursor skew

 d4-d0 Cursor end

Description:

--

Port-Index: 0ch Port: 03d4h, 03b4h

usage: Start address high

--

Port-Index: 0dh Port: 03d4h, 03b4h

usage: Start address low

Description: Determine the offset in display memory to be

 displayed on the upper-left corner on the screen

--

Port-Index: 0eh Port: 03d4h, 03b4h

usage: Cursor location (high byte)

--

Port-Index: 0fh Port: 03d4h, 03b4h

usage: Cursor location (low byte)

Description: Where the cursor is displayed on screen

--

Port-Index: 10h Port: 03d4h, 03b4h

usage: Vertical retrace start

Description: 8 bits out of 10

--

Port-Index: 11h Port: 03d4h, 03b4h

usage: Vertical retrace end

 d7 Write protect CRTC register 0 to 7

 d6 refresh cycle select

 d5 enable vertical interrupt (when 0)

 d4 Clear vertical interrupt (when 0)

 d0-d3 Vertical retrace end

--

Port-Index: 12h Port: 03d4h, 03b4h

usage: Vertical display enable end

Description: eight LSB bits out of ten-bit value which define

 scan line minus one at which the display ends.

 The other two are in CRTC register index 7

--

Port-Index: 13h Port: 03d4h, 03b4h

usage: Offset / Logical screen width

Description: Logical screen width between successive scan lines

--

Port-Index: 14h Port: 03d4h, 03b4h

usage: Underline location register

 d7 Reserved

 d6 Double word mode

 d5 count by 4

 d0-d4 Underline location

Description: Underline location: Monochrome textmode only

--

Port-Index: 15h Port: 03d4h, 03b4h

usage: Start vertical blanking

Description: eight LSB bits of ten-bit value minus one which

 define at which scan line the vertical blanking

 starts. The other two bits are in CRTC registers

 index 7 and 9

--

Port-Index: 16h Port: 03d4h, 03b4h

usage: End vertical blanking

Description: eight LSB bits of a value which determine the scan

 line after which vertical blanking ends.

--

Port-Index: 17h Port: 03d4h, 03b4h

usage: Mode control register

 d7 Enable vertical and hoizontal retrace

 d6 Byte mode (1), word mode (0)

 d5 Address wrap

 d4 Reserved

 d3 count by 2

 d2 multiple vertical by 2 (use half in

 CRTC (8,10,12,14,18)

 d1 Select row scan counter (not used)

 d0 compatibilty mode support (enable interleave)

--

Port-Index: 18h Port: 03d4h, 03b4h

usage: Line compare register

Description: Split screen, 8 bit value out of a ten-bit value

--

Port-Index: 00h Port: 03c4h

usage: Reset register

 d7-d2 Reserved

 d1 Synchronous reset

 d0 Asynchronous reset

Description: Synchr. when set to zero, will halt and reset

 the sequencer at the end of its current cycle

 Asyncht. when set to zero, will immediatly halt

 and reset the sequencer. Data can be loss.

--

Port-Index: 01h Port: 03c4h

usage: Clock mode register

 d7,d6 Reserved

 d5 display off

 d4 Allow 32-bit Fetch (not used in standard modes)

 d3 Divide dot clock by 2 (used in some 320*200 modes)

 d2 Allow 16-bit fetch (used in mon graphics modes)

 d1 Reserved

 d0 Enable (0) 9 dot characters (mono text and 400-line)

Description: Display off: Will blank screen and give the cpu

 uninterrupted access the display memory.

--

Port-Index: 02h Port: 03c4h

usage: Color plane write enable register

 d7,d6 Reserved

 d3 Plane 3 Write enable

 d2 Plane 2 Write enable

 d1 Plane 1 Write enable

 d0 Plane 0 Write enable

Description:

--

Port-Index: 03h Port: 03c4h

usage: Character generator select register

 d7,d6 Reserved

 d5 Character generator table select A (MSB)

 d4 Character generator table select B (MSB)

 d3,d2 Character generator table select A

 d1,d0 Character generator table select B

Description: This register is only of interest if your software

 will be using multiple character sets. Either one

 or two character sets can be active. Table A selects

 the charcater with attribute d3 set to zero and

 Table B is the one with d3 set to one.

--

Port-Index: 04h Port: 03c4h

usage: Memory mode register

 d4-d7 Reserved

 d3 Chain 4 (address bits 0&1 to select plan, mode 13h)

 d2 Odd/even (address bit 0 to select plane 0&2 or

 1&3 text modes)

 d1 Extended memory (disable 64k modes)

 d0 Reserved

Description:

--

Port-Index: 00h Port: 03ceh

usage: Set / Reset register

 d7-d4 Reserved (0)

 d3 Fill data for plane 3

 d2 Fill data for plane 2

 d1 Fill data for plane 1

 d0 Fill data for plane 0

--

Port-Index: 01h Port: 03ceh

usage: Set / Reset enable register

 d7-d4 Reserved (0)

 d3 enable set/reset for plane 3 (1 = enable)

 d2 enable set/reset for plane 2 (1 = enable)

 d1 enable set/reset for plane 1 (1 = enable)

 d0 enable set/reset for plane 0 (1 = enable)

Description: Set/Reset enable defines which memory planes will

 receive fill data from set/reset register. Any plane

 that is disable for set/reset will be written with

 normal processor output data

--

Port-Index: 02h Port: 03ceh

usage: Color compare register

 d7-d4 Reserved

 d3 Color compare value for plane 3

 d2 Color compare value for plane 2

 d1 Color compare value for plane 1

 d0 Color compare value for plane 0

Description: one indicate that color is the same

--

Port-Index: 03h Port: 03ceh

usage: Data rotate / Function select register

 d7-d5 Resrved (0)

 d4,d3 Function select

 d2-d0 Rotate count

 d4 d3 Function

 0 0 Write data unmodified

 0 1 Write data ANDed with processor latches

 1 0 Write data ORed with processor latches

 1 1 Write data XORed with processor latches

Description: Rotation is made before writing data

--

Port-Index: 04h Port: 03ceh

usage: Read plane select register

 d7-d2 Reserved (0)

 d1,d0 Defines color plane for reading (0-3)

Description: Doesnt matter in color compare mode

--

Port-Index: 05h Port: 03ceh

usage: Mode register

 d7 Reserved (0)

 d6 256-colour mode

 d5 Shift register mode

 d4 Odd / Even mode

 d3 Color compare mode enable (1 = enable)

 d2 Reserved (0)

 d1,d0 Write mode

 d1 d0 Write mode

 0 0 Direct write (data rotate, set/reset may apply)

 0 1 Use processor latches as write data

 1 0 Color plane n (0-3) is filled with the value of

 bit n in the write data

 1 1 Use (rotated) write data ANDed with Bit mask as

 bit mask. Use set/reset as if set/reset was

 enable for all planes

Description:

--

Port-Index: 06h Port: 03ceh

usage: Miscellaneous register

 d7-d4 Reserved

 d3-d2 Memory map

 00 = A000h for 128k

 01 = A000h for 64k

 10 = B000h for 32k

 11 = B800h for 32k

 d1 Odd/even enable (used in text modes)

 d0 Graphics mode enable

Description: Memory map defines the location and size of the

 host window

--

Port-Index: 07h Port: 03ceh

usage: Color don't care register

 d7-d4 Reserved (0)

 d3 Plane 3 don't care

 d2 Plane 2 don't care

 d1 Plane 1 don't care

 d0 Plane 0 don't care

Description: Color don't care is used in conjunction with color

 compare mode. This register masks particular planes

 from being tested during color compare cycles.

--

Port-Index: 08h Port: 03ceh

usage: Bitmask register

Description: The bitmask register is used to mask certain bit

 positons from being modified.

--

Port-Index: - Port: 03c0h both index and data

usage: d7,d6 Reserved

 d5 Palette address source

 0 = palette can be modified, screen is blanked

 1 = screen is enable, palette cannot be modified

 d4-d0 Palette register address

Description: Palette register address selects which register of

 the attributes controller will be addres,sed by the

 next I/O write cycle

--

Port-Index: 00h-0fh Port: 03c0h

usage: Color palette register

 d6,d7 Reserved

 d5-d0 Color value

Description: not used in 256 color modes

--

Port-Index: 10h Port: 03c0h

usage: Mode control register

 d7 p4,p5 source select

 d6 pixel width

 d5 Horizontal panning compatibility

 d4 Reserved

 d3 Background intensify / enable blinking

 d2 Line graphics enable (text modes only)

 d1 display type

 d0 graphics / text mode

Description: p4,p5 source select: selects the source for video

 outputs p4 and p5 to the DACs. If set to zero, p4

 and p5 are driven from the palette registers (normal

 operation). If set to one, p4 and p5 video outputs

 come from bits 0 and 1 of the color select register.

 pixel width: is set to one in mode 13h (256-color mode)

 horizontal panning compatibility: enhances the

 operation of the line compare register of the CRT

 controller, which allows one section of the screen

 to be scrolled while another section remains stationary.

 When this bit is set to one, the stationary

 section of the screen will also be immune to horizontal

 panning.

--

Port-Index: 11h Port: 03c0h

usage: Screen border color

Description: In text modes, the screen border color register

 selects the color of the border that sorrounds the

 text display area on the screen. This is also referred

 to by IBM as overscan. Unfortunately, this feature

 does not work properly on EGA displays in 350-line

 modes.

--

Port-Index: 12h Port: 03c0h

usage: Color plane enable register

 d7,d6 Reserved

 d5,d4 Video status mux

 d3 Enable color plane 3

 d2 Enable color plane 2

 d1 Enable color plane 1

 d0 Enable color plane 0

Description: The video status mux bits can be used in conjunction

 with the diagnostic bits of input status register 1

 to read palette registers. For the EGA, this is the

 only means available for reading the palette registers.

 Enable color planes can be used to enable or disable

 color planes at the input to the color lockup table.

 A zero in any of these bit positions will mask the

 data from that color plane. The effect on the display

 will be the same as if that color plane were cleared

 to all zeros.

--

Port-Index: 13h Port: 03c0h

usage: Horizontal panning register

 d7-d4 reserved

 d3-d0 Horizontal pan

Description: Horizontal pan allows the display to be shifted

 horizontally one pixel at a time.

 d3-d0 Number of pixels shifted to the left

 0+,1+,2+ 13h Other modes

 3+,7,7+

 0 1 0 0

 1 2 1 -

 2 3 2 1

 3 4 3 -

 4 5 4 2

 5 6 5 -

 6 7 6 3

 7 8 7 -

 8 9 - -

--

Port-Index: 14h Port: 03c0h

usage: Color select register

 d7-d4 Reserved

 d3 color 7

 d2 color 6

 d1 color 5

 d0 color 4

Description: Color 7 and color 6: are normally used as the high

 order bits of the eight-bit video color data from the

 attribute controller to the DACs. The only exceptions

 are 256-color modes

 Color 5 and color 4: can be used in place of the p5

 and p6 outputs from the palette registers (see mode

 control register - index 10h). In 16-color modes, the

 color select register can be used to rapidly cycle

 between sets of colors in the video DAC.

--

Port-Index: - Port: 03c6h

usage: Pixel mask register

Description: ???

--

Port-Index: - Port: 03c7h

usage: DAC state register (read-only)

Description: if d0 and d1 is set to zero it indicates that

 the lookup table is in a write mode

--

Port-Index: - Port: 03c7h

usage: Lookup table read index register (Write only)

Description: Used when you want to read the palette (set color

 number)

--

Port-Index: - Port: 03c8h

usage: Lookup table write index register

Description: Used when you want to change palette (set color

 number)

--

Port-Index: - Port: 03c9h

usage: Lookup table data register

Description: Read color value (Red-Green-Blue) or write same data.

--

