MODE X

 |------------------------|

 | INTRODUCTION TO MODE X |

 |------------------------|

 By Robert Schmidt <robert@stud.unit.no>

|--------------+---

| XINTRO18.TXT |

|--------------|

Title: INTRODUCTION TO MODE X

Version: 1.8

Author: Robert Schmidt <robert@stud.unit.no>

Copyright: (C) 1993 of Ztiff Zox Softwear - refer to Status below.

Last revision: 25-Nov-93 (Modified for the PCGPE 17-Apr-94)

Figures: 1. M13ORG - memory organization in mode 13h

 2. MXORG - memory organization in unchained modes

 (Both files are appended to the end of this document)

 The figures are available as 7-bit ASCII text (ASC) files.

Status: This article, its associated figures and source listings

 named above, are all donated to the public domain.

 Do with it whatever you like, but give credit where

 credit is due.

 The standard disclaimer applies.

Index: 0. ABSTRACT

 1. INTRODUCTION TO THE VGA AND ITS 256-COLOR MODE

 2. GETTING MORE PAGES AND PUTTING YOUR FIRST PIXEL

 3. THE ROAD FROM HERE

 4. BOOKS ON THE SUBJECT

 5. BYE - FOR NOW

0. ABSTRACT

This text gives a fairly basic, yet technical, explanation to what, why

and how Mode X is. It first tries to explain the layout of the VGA

memory and the shortcomings of the standard 320x200 256-color mode,

then gives instructions on how one can progress from mode 13h to a

multipage, planar 320x200 256-color mode, and from there to the

quasi-standard 320x240 mode, known as Mode X.

A little experience in programming the standard VGA mode 13h

(320x200 in 256 colors) is assumed. Likewise a good understanding of

hexadecimal notation and the concepts of segments and I/O ports is

assumed. Keep a VGA reference handy, which at least should have

definitions of the VGA registers at bit level.

Throughout the article, a simple graphics library for unchained (planar)

256-color modes is developed. The library supports the 320x200 and

320x240 modes, active and visible pages, and writing and reading

individual pixels.

1. INTRODUCTION TO THE VGA AND ITS 256-COLOR MODE

Since its first appearance on the motherboards of the IBM PS/2 50, 60

and 80 models in 1987, the Video Graphics Array has been the de facto

standard piece of graphics hardware for IBM and compatible personal

computers. The abbreviation, VGA, was to most people synonymous with

acceptable resolution (640x480 pixels), and a stunning rainbow of colors

(256 from a palette of 262,144), at least compared to the rather gory

CGA and EGA cards.

Sadly, to use 256 colors, the VGA BIOS limited the users to 320x200

pixels, i.e. the well-known mode 13h. This mode has one good and one

bad asset. The good one is that each one of the 64,000 pixels is easily

addressable in the 64 Kb video memory segment at 0A000h. Simply calculate

the offset using this formula:

offset = (y * 320) + x;

Set the byte at this address (0A000h:offset) to the color you want, and

the pixel is there. Reading a pixel is just as simple: just read the

corresponding byte. This was heaven, compared to the havoc of planes and

masking registers needed in 16-color modes. Suddenly, the distance from a

graphics algorithm on paper to an implemented graphics routine in assembly

was cut down to a fraction. The results were impressively fast, too!

The bad asset is that mode 13h is also limited to only one page, i.e.

the VGA can hold only one screenful at any one time (plus 1536 pixels, or

about four lines). Most 16-color modes let the VGA hold more than one page,

and this enables you to show one of the pages to the user, while drawing on

another page in the meantime. Page flipping is an important concept in making

flicker free animations. Nice looking and smooth scrolling is also almost

impossible in mode 13h using plain VGA hardware.

Now, the alert reader might say: "Hold on a minute! If mode 13h enables

only one page, this means that there is memory for only one page. But I

know for a fact that all VGAs have at least 256 Kb RAM, and one 320x200

256-color page should consume only 320*200=64000 bytes, which is less

than 64 Kb. A standard VGA should room a little more than four 320x200

pages!" Quite correct, and to see how the BIOS puts this limitation on

mode 13h, I'll elaborate a little on the memory organization of the VGA.

The memory is separated into four bit planes. The reason for this stems

from the EGA, where graphics modes were 16-color. Using bit planes, the

designers chose to let each pixel on screen be addressable by a single

bit in a single byte in the video segment. Assuming the palette has

not been modified from the default, each plane represent one of the EGA

primary colors: red, green, blue and intensity. When modifying the bit

representing a pixel, the Write Plane Enable register is set to the

wanted color. Reading is more complex and slower, since you can

only read from a single plane at a time, by setting the Read Plane

Select register. Now, since each address in the video segment can

access 8 pixels, and there are 64 Kb addresses, 8 * 65,536 = 524,288

16-color pixels can be accessed. In a 320x200 16-color mode, this makes

for about 8 (524,288/(320*200)) pages, in 640x480 you get nearly 2

(524,288/(640*480)) pages.

In a 256-color mode, the picture changes subtly. The designers decided

to fix the number of bit planes to 4, so extending the logic above to 8

planes and 256 colors does not work. Instead, one of their goals was to

make the 256-color mode as easily accessible as possible. Comparing the

8 pixels/address in 16-color modes to the 1-to-1 correspondence of

pixels and addresses of mode 13h, one can say that they have

succeeded, but at a certain cost. For reasons I am not aware of, the

designers came up with the following effective, but memory-wasting

scheme:

The address space of mode 13h is divided evenly across the four bit

planes. When an 8-bit color value is written to a 16-bit address in the

VGA segment, a bit plane is automatically selected by the 2 least

significant bits of the address. Then all 8 bits of the data is written

to the byte at the 16-bit address in the selected bitplane (have a look at

figure 1). Reading works exactly the same way. Since the bit planes are so

closely tied to the address, only every fourth byte in the video memory is

accessible, and 192 Kb of a 256 Kb VGA go to waste. Eliminating the

need to bother about planes sure is convenient and beneficial, but to

most people the loss of 3/4 of the total VGA memory sounds just hilarious.

To accomodate this new method of accessing video memory, the VGA

designers introduced a new configuration bit called Chain-4, which

resides as bit number 3 in index 4 of the Sequencer. In 16-color modes,

the default state for this bit is off (zero), and the VGA operates as

described earlier. In the VGA's standard 256-color mode, mode 13h, this

bit is turned on (set to one), and this turns the tieing of bit

planes and memory address on.

In this state, the bit planes are said to be chained together, thus mode

13h is often called a _chained mode_.

Note that Chain-4 in itself is not enough to set a 256-color mode -

there are other registers which deals with the other subtle changes in

nature from 16 to 256 colors. But, as we now will base our work with

mode X on mode 13h, which already is 256-color, we won't bother about

these for now.

2. GETTING MORE PAGES AND PUTTING YOUR FIRST PIXEL

The observant reader might at this time suggest that clearing the

Chain-4 bit after setting mode 13h will give us access to all 256 Kb of

video memory, as the two least significant bits of the byte address

won't be `wasted' on selecting a bit plane. This is correct. You might

also start feeling a little uneasy, because something tells you that

you'll instantly loose the simple addressing scheme of mode 13h. Sadly,

that is also correct.

At the moment Chain-4 is cleared, each byte offset addresses *four*

sequential pixels, corresponding to the four planes addressed in 16-color

modes. Every fourth pixel belong in the same plane. Before writing to a byte

offset in the video segment, you should make sure that the 4-bit mask in the

Write Plane Enable register is set correctly, according to which of the four

addressable pixels you want to modify. In essence, it works like a 16-color

mode with a twist. See figure 2.

So, is this mode X? Not quite. We need to elaborate to the VGA how to

fetch data for refreshing the monitor image. Explaining the logic

behind this is beyond the scope of this getting-you-started text, and it

wouldn't be very interesting anyway. Also, mode 13h has only 200 lines,

while I promised 240 lines. I'll fix that later below. Here is the minimum

snippet of code to initiate the 4 page variant of mode 13h (320x200), written

in plain C, using some DOS specific features (see header for a note about the

sources included):

----8<-------cut begin------

/* width and height should specify the mode dimensions. widthBytes

 specify the width of a line in addressable bytes. */

int width, height, widthBytes;

/* actStart specifies the start of the page being accessed by

 drawing operations. visStart specifies the contents of the Screen

 Start register, i.e. the start of the visible page */

unsigned actStart, visStart;

/*

 * set320x200x256_X()

 * sets mode 13h, then turns it into an unchained (planar), 4-page

 * 320x200x256 mode.

 */

set320x200x256_X()

 {

 union REGS r;

 /* Set VGA BIOS mode 13h: */

 r.x.ax = 0x0013;

 int86(0x10, &r, &r);

 /* Turn off the Chain-4 bit (bit 3 at index 4, port 0x3c4): */

 outport(SEQU_ADDR, 0x0604);

 /* Turn off word mode, by setting the Mode Control register

 of the CRT Controller (index 0x17, port 0x3d4): */

 outport(CRTC_ADDR, 0xE317);

 /* Turn off doubleword mode, by setting the Underline Location

 register (index 0x14, port 0x3d4): */

 outport(CRTC_ADDR, 0x0014);

 /* Clear entire video memory, by selecting all four planes, then

 writing 0 to the entire segment. */

 outport(SEQU_ADDR, 0x0F02);

 memset(vga+1, 0, 0xffff); /* stupid size_t exactly 1 too small */

 vga[0] = 0;

 /* Update the global variables to reflect the dimensions of this

 mode. This is needed by most future drawing operations. */

 width = 320;

 height = 200;

 /* Each byte addresses four pixels, so the width of a scan line

 in *bytes* is one fourth of the number of pixels on a line. */

 widthBytes = width / 4;

 /* By default we want screen refreshing and drawing operations

 to be based at offset 0 in the video segment. */

 actStart = visStart = 0;

 }

----8<-------cut end------

As you can see, I've already provided some of the mechanics needed to

support multiple pages, by providing the actStart and visStart variables.

Selecting pages can be done in one of two contexts:

 1) selecting the visible page, i.e. which page is visible on

 screen, and

 2) selecting the active page, i.e. which page is accessed by

 drawing operations

Selecting the active page is just a matter of offsetting our graphics

operations by the address of the start of the page, as demonstrated in

the put pixel routine below. Selecting the visual page must be passed

in to the VGA, by setting the Screen Start register. Sadly enough, the

resolution of this register is limited to one addressable byte, which

means four pixels in unchained 256-color modes. Some further trickery is

needed for 1-pixel smooth, horizontal scrolling, but I'll make that a subject

for later. The setXXXStart() functions provided here accept byte

offsets as parameters, so they'll work in any mode. If widthBytes and

height are set correctly, so will the setXXXPage() functions.

----8<-------cut begin------

/*

 * setActiveStart() tells our graphics operations which address in video

 * memory should be considered the top left corner.

 */

setActiveStart(unsigned offset)

 {

 actStart = offset;

 }

/*

 * setVisibleStart() tells the VGA from which byte to fetch the first

 * pixel when starting refresh at the top of the screen. This version

 * won't look very well in time critical situations (games for

 * instance) as the register outputs are not synchronized with the

 * screen refresh. This refresh might start when the high byte is

 * set, but before the low byte is set, which produces a bad flicker.

 * I won't bother with this now.

 */

setVisibleStart(unsigned offset)

 {

 visStart = offset;

 outport(CRTC_ADDR, 0x0C); /* set high byte */

 outport(CRTC_ADDR+1, visStart >> 8);

 outport(CRTC_ADDR, 0x0D); /* set low byte */

 outport(CRTC_ADDR+1, visStart & 0xff);

 }

/*

 * setXXXPage() sets the specified page by multiplying the page number

 * with the size of one page at the current resolution, then handing the

 * resulting offset value over to the corresponding setXXXStart()

 * function. The first page number is 0.

 */

setActivePage(int page)

 {

 setActiveStart(page * widthBytes * height);

 }

setVisiblePage(int page)

 {

 setVisibleStart(page * widthBytes * height);

 }

----8<-------cut end------

Due to the use of bit planes, the graphics routines tend to get more

complex than in mode 13h, and your first versions will generally tend to

be a little slower than mode 13h algorithms. Here's a put pixel routine

for any unchained 256-color mode (it assumes that the 'width' variable

from the above code is set correctly). Optimizing is left as an exercise

to you, the reader. This will be the only drawing operation I'll cover

in this article, but all general primitives like lines and circles can be

based on this routine. (You'll probably not want to do that though, due

to the inefficiency.)

----8<-------cut begin------

putPixel_X(int x, int y, char color)

 {

 /* Each address accesses four neighboring pixels, so set

 Write Plane Enable according to which pixel we want

 to modify. The plane is determined by the two least

 significant bits of the x-coordinate: */

 outportb(0x3c4, 0x02);

 outportb(0x3c5, 0x01 << (x & 3));

 /* The offset of the pixel into the video segment is

 offset = (width * y + x) / 4, and write the given

 color to the plane we selected above. Heed the active

 page start selection. */

 vga[(unsigned)(widthBytes * y) + (x / 4) + actStart] = color;

 }

char getPixel_X(int x, int y)

 {

 /* Select the plane from which we must read the pixel color: */

 outport(GRAC_ADDR, 0x04);

 outport(GRAC_ADDR+1, x & 3);

 return vga[(unsigned)(widthBytes * y) + (x / 4) + actStart];

 }

----8<-------cut end------

However, by now you should be aware of that the Write Plane Enable

register isn't limited to selecting just one bit plane, like the

Read Plane Select register is. You can enable any combination of all

four to be written. This ability to access 4 pixels with one

instruction helps quadrupling the speed in certain respects, especially when

drawing horizontal lines and filling polygons of a constant color. Also, most

block algorithms can be optimized in various ways so that they need only

a constant number of OUTs (typically four) to the Write Plane Enable

register. OUT is a relatively slow instruction.

The gained ability to access the full 256 Kb of memory on a standard

VGA enables you to do paging and all the goodies following from that:

smooth scrolling over large maps, page flipping for flicker free

animation... and I'll leave something for your own imagination.

In short, the stuff gained from unchaining mode 13h more than

upweighs the additional complexity of using a planar mode.

Now, the resolution of the mode is of little interest in this

context. Nearly any 256-color resolution from (about) 80x8 to 400x300

is available for most VGAs. I'll dwell particularly by 320x240, as this

is the mode that Michael Abrash introduced as 'Mode X' in his DDJ

articles. It is also the resolution that most people refer to when

using that phrase.

The good thing about the 320x240 mode is that the aspect ratio is

1:1, which means that each pixel is 'perfectly' square, i.e. not

rectangular like in 320x200. An ellipse drawn with the same number of

pixels along both main axes will look like a perfect circle in 320x240,

but like a subtly tall ellipse in 320x200.

Here's a function which sets the 320x240 mode. You'll notice that

it depends on the first piece of code above:

----8<-------cut begin------

set320x240x256_X()

 {

 /* Set the unchained version of mode 13h: */

 set320x200x256_X();

 /* Modify the vertical sync polarity bits in the Misc. Output

 Register to achieve square aspect ratio: */

 outportb(0x3C2, 0xE3);

 /* Modify the vertical timing registers to reflect the increased

 vertical resolution, and to center the image as good as

 possible: */

 outport(0x3D4, 0x2C11); /* turn off write protect */

 outport(0x3D4, 0x0D06); /* vertical total */

 outport(0x3D4, 0x3E07); /* overflow register */

 outport(0x3D4, 0xEA10); /* vertical retrace start */

 outport(0x3D4, 0xAC11); /* vertical retrace end AND wr.prot */

 outport(0x3D4, 0xDF12); /* vertical display enable end */

 outport(0x3D4, 0xE715); /* start vertical blanking */

 outport(0x3D4, 0x0616); /* end vertical blanking */

 /* Update mode info, so future operations are aware of the

 resolution: */

 height = 240;

 }

----8<-------cut end------

As you've figured out, this mode will be completely compatible with the

utility functions presented earlier, thanks to the global variable

'height'. Boy, am I foreseeing or what!

Other resolutions are achieved through giving other values to the sync

timing registers of the VGA, but this is quite a large and complex

subject, so I'll postpone this to later, if ever.

Anyway, I hope I've helped getting you started using mode X. As far as

I know, the two modes I've used above should work on *any* VGA and Super

VGA available, so this is pretty stable stuff. Let me know of any

trouble, and -

 good luck!

3. THE ROAD FROM HERE

I'm providing information on various libraries and archives which relate

to what this article deals with. If you want me to add anything to this

list (for future articles), let me know, although I can't promise anything.

I am assuming you have ftp access.

wuarchive.wustl.edu:/pub/MSDOS_UPLOADS/programming/xlib06.zip

This is the current de facto C/assembler library for programming

unchained modes (do not confuse with a X Windows library). All sources

are included, and the library is totally free. It has functions for

pixels, lines, circles, bezier curves, mouse handling, sprites (bitmaps),

compiled bitmaps, and supports a number of resolutions. The version number

('06') is current as of November 1993.

graphprg.zip

Michael Abrash' articles in Doctor Dobbs Journal is always mentioned

with awe. In this 350 Kb archive, most of his interesting stuff has

been gathered. Read about Mode X development and techniques from month

to month. Included is also all the individual source code snippets from

each article, and also the full XSHARP library providing linedrawing,

polygons, bitmaps, solid 3D projection and speedy rendering, and even an

implementation of 2D texture mapping (can be used for quasi-3D texture

mapping), plus an article on assembly optimization on the i86 processor

family. Definitely recommended.

oak.oakland.edu:/pub/msdos/vga/vgadoc2.zip

This is a bare bones VGA register reference. It also contains register

references for the CGA, EGA and Hercules cards, in addition to dozens of

SuperVGAs. Check out the BOOKS section for some decent VGA references

though - you don't want to start tweaking without a real one.

wuarchive.wustl.edu:/pub/MSDOS_UPLOADS/programming/tweak15b.zip

TWEAK might be of interest to the more adventurous reader. TWEAK lets you

play around with the registers of the VGA in an interactive manner.

Various testing screens for viewing your newmade modes are applied at

the press of a key. Version 1.5 adds a test screen which autodetects your

graphics mode and displays various information about resolutions etc.

Keep a VGA reference handy. Don't try it if this is the first time you've

heard of 'registers' or 'mode X' or 'tweaking'. I was planning a version

based on the Turbo Vision interface, but time has been short. Maybe later!

4. BOOKS ON THE SUBJECT

Extremely little has been published in written form about using

'Mode X'-style modes. Below are some books which cover VGA programming

at varying degrees of technical level, but the only one to mention

unchained modes and Mode X, is Michael Abrash'. I'd get one of the VGA

references first, though.

 o George Sutty & Steve Blair : "Advanced Pogrammer's Guide to the

 EGA/VGA" from Brady. A bit old perhaps, but covers all *standard*

 EGA/VGA registers, and discusses most BIOS functions and other

 operations. Contains disk with C/Pascal/assembler source code.

 There's a sequel out for SuperVGAs, which I haven't seen.

 o Michael Abrash : "Power Graphics Programming" from QUE/Programmer's

 Journal. Collections of (old) articles from Programmer's Journal on

 EGA/VGA, read modes and write modes, animation, tweaking (320x400

 and 360x480). His newer ravings in DDJ covers fast 256-color

 bitmaps, compiled bitmaps, polygons, 3D graphics, texture mapping

 among other stuff.

 o Richard F. Ferraro : "Programmer's Guide to the EGA and VGA video

 cards including Super VGA". I don't have this one, but heard it's

 nice. Detailed coverage of all EGA/VGA registers. The Super VGA

 reference makes it attractive.

 o Richard Wilton : "Programmer's Guide to PC & PS/2 Video Systems"

 Less technical, more application/algorithm oriented. Nice enough,

 even though it is a bit outdated, in that he discusses CGA and

 Hercules cards just as much as EGA/VGA.

5. BYE - FOR NOW

I am considering writing a text describing in more detail the process of

using TWEAK to achieve the VGA resolution you want or need. However, I

thought I'd let this document go first, and see if I get any reactions.

If I don't, I'll stop. Feel free to forward any suggestions,

criticisms, bombs and beers.

I can be reached via:

 o e-mail: robert@stud.unit.no

 o land mail:

 Robert Schmidt

 Stud.post 170

 NTH

 N-7034 Trondheim

 NORWAY

Nothing would encourage or please me more than a postcard from where you

live!

|-----------+--

| M1ORG.ASC |

|-----------|

Figure 1: Memory organization in mode 13h (ASCII version)

 by Robert Schmidt

 (C) 1993 Ztiff Zox Softwear

a. Imagine that the top of the screen looks like this (pixel values are

 represented by color digits 0-9 for simplicity - actual colors may

 range from 0 to 255) - a screen width of 320 pixels is assumed:

 address: 0 10 310 319

 --

 |0123456789012345 0123456789|

 | |

 | |

 |

b. In VGA memory, the screen is represented as follows (question marks

 represent unused bytes):

 Plane 0:

 address: 0 10 310 319

 --

 |0???4???8???2??? ??2???6???|

 | |

 | |

 Plane 1:

 address: 0 10 310 319

 --

 |?1???5???9???3?? ???3???7??|

 | |

 | |

 Plane 2:

 address: 0 10 310 319

 --

 |??2???6???0???4? 0???4???8?|

 | |

 | |

 Plane 3:

 address: 0 10 310 319

 --

 |???3???7???1???5 ?1???5???9|

 | |

 | |

 I.e. a plane is selected automatically by the two least significant

 bits of the address of the byte being read from or written two.

 This renders 3/4 of the video memory unavailable and useless, but

 all visible pixels are easily accessed, as each address in the video

 segment provides access to one and ONLY ONE pixel.

|-----------+--

| MXORG.ASC |

|-----------|

Figure 2: Memory organization in unchained 256-color modes (like

 Mode X) (ASCII version)

 by Robert Schmidt

 (C) 1993 Ztiff Zox Softwear

Imagine that the screen looks the same as in figure 1a. A screen width

of 320 pixels is still assumed.

In VGA memory, the screen will be represented as follows:

 Plane 0:

 address: 0 10 70 79 (NOT 319!)

 --

 |0482604826048260 0482604826|

 | |

 | |

 Plane 1:

 address: 0 10 70 79

 --

 |1593715937159371 1593715937|

 | |

 | |

 Plane 2:

 address: 0 10 70 79

 --

 |2604826048260482 2604826048|

 | |

 | |

 Plane 3:

 address: 0 10 70 79

 --

 |3715937159371593 3715937159|

 | |

 | |

Note that if pixel i is in plane p, pixel i+1 is in plane (p+1)%4.

When the planes are unchained, we need to set the Write Plane Enable

register to select which planes should receive the data when writing,

or the Read Plane Select register when reading. As is evident, one

address in the video segment provides access to no less than FOUR

different pixels.

|-------+---

| Zox3D |

|-------|

Available via ftp :

ftp.wustl.edu:/pub/MSDOS_UPLOADS/games/programming/zox3d15.zip

wasp.eng.ufl.edu:/pub/msdos/demos/<somewhere>/zox3d15.zip

d15.zip contains a demo of my 3D graphics engine.

It resembles Wolf3D, but has a number of additional

features:

- texture mapped floor and ceiling (sky, in this demo)

- real, recursive MIRRORS!

- partly TRANSPARENT walls

- input from keyboard, joystick and mouse (at the same

 time, too, if you wish)

- controllable camera height - NOT fixed like Wolf3D

- quick resizable window

- online help and fps rating

- advanced collision detection and handling

- supports a variety of tweaked X modes, from 256x256 to 400x300.

The sky and mirrors have to be seen to be beleived!

Zox3D does NOT implement objects, like the guards in

Wolf3D, but that should be a breeze to add.

The complete sources are available. Read ZOX3D.DOC in

the demo archive for information.

--

Robert Schmidt - robert@stud.unit.no - Buuud@IRC

