
IA-32 Boot Sector Code

• Boot Sector Code
• Boot Loader (Real & Protected

Mode)
• Real-Mode Test Kernel
• Protected-Mode Test Kernel

WEQAAR A. JANJUA
<janjua@asu.edu>

Department of Computing Studies
Arizona State University - Polytechnic

0. ABSTRACT
The project is to write FAT-12 filesystem on a floppy disk and a

bootloader that boots two different test kernels i.e. Real-mode and Protected-
mode by first switching to the appropriate mode and handing the control over
to the kernel. The kernels just print a string on bootup, they are not real
kernels i.e. written just for the sole purpose of demonstrating boot loading
process.

1. INTRODUCTION
A computer system is a complex machinery, and the operating system

is an elaborate tool that unrolls hardware complexities to end up showing a
simple and standardized environment to the end user. When the power is
turned on, however, the system software must work in a limited environment,
and it must load the kernel using this scarce operating environment. This
paper describes the booting process of IA-32 Platform.

2. THE COMPUTER AT POWER-ON
In order to be able to do something with the computer when power is

applied, things are arranged so that the processor begins execution from the
system's firmware. The firmware is "unmovable software" found in ROM
memory; some companies call it BIOS (Basic Input-Output System) to
underline its software role, some call it PROM or "flash" to stress on its
hardware implementation, while someone else calls it "console" to focus on
user interaction.

The firmware usually checks that the hardware is correctly working,
and retrieves part (or all) of the kernel from a storage medium and executes it.
This first part of the kernel must load the rest of itself and initialize the whole
system.

3. THE PC
When the x86 processor is turned on in a personal computer, it is a 16-

bit processor that only sees one Meg of RAM. This environment is known as
"real mode", and is dictated by compatibility with older processors of the same
family. It performs a POST(Power On Self Test) that initializes the chip set
and checks that the computer is able to function correctly. Since the BIOS
provide some basic hardware access it also initializes that and performs
whatever internal house keeping that is necessary. One of the thing that is
does is set up the BIOS Data Area.

When the BIOS is done starting up it loads the first sector of the floppy
disk into memory at 0x0000:0x7c00. That first sector is the BOOT SECTOR.
The BIOS checks the format of the boot sector and will usually complain with
some BIOS dependent message like "No system on disk" if it encounters an
error.

FORMAT OF THE BOOT SECTOR:
The boot sector is 512 bytes long and is the very first sector on a

floppy disk. The first 3 bytes of the sector must be a jump or a short jump
followed by a NOP.

jmp start_code
 ; some code
 start_code:
OR
 jmp short start_code
 nop ; required nop
 ; some code
start_code:

Some BIOS's reportedly check for the NOP. For FAT compatibility the
next 59 bytes must contain the BIOS Parameter Block.

THE BIOS PARAMETER BLOCK

Offs
et

Size Description (default FAT12 1.44 Mb value)

0 8 Name of operating system

8 2 Bytes per sector (0x200)

10 1 Sectors per cluster (1)

11 2 Reserved sectors (1)

13 1 Number of FATS (2)

14 2 Root directory entries (0x00E0)

16 2 Total sectors (0x0B40)

18 1 Media Descriptor (0xF0)

19 2 Sectors per FAT (9)

21 2 Sector per track (0x12)

23 2 Number of heads (2)

25 4 Hidden sectors (0)

29 4 Total sectors huge (0)

33 1 Drive number (0)

34 1 Reserved

35 1 Signature (0x29)

36 4 Volume ID

40 11 Volume name1

51 8 File system type ('FAT12')

(All the strings must be padded with spaces.)

FLOPPY DISK MEDIA DESCRIPTORS

Des
crip
tor

For
ma
t

Size

C
yli
n
de
rs

Hea
ds

Se
ct
or
s1

F
A
T
si
ze
2

R
o
o
t
s
i
z
e
2

0xfe
160
Kb

5 1/4 40 1 8 ? ?

0xfc
180
Kb

5 1/4 40 1 9 ? 4

0xff
320
Kb

5 1/4 40 2 8 ? ?

0xfd
360
Kb

5 1/4 40 2 9 4 7

0xf9
720
Kb

3 1/2 80 2 9 6 7

0xf9
1.2
Mb

5 1/4 80 2 15 14
1
4

0xf0
1.4
4
Mb

3 1/2 80 2 18 18
1
4

?
2.8
8
Mb

3 1/2 80 2 36 ? ?

1 Sectors per. cylinder
2 Size in sectors

Then comes the code that will load an operating system from disk.

At the very end of the boot sector at OFFSET 510 (just two bytes
before the end) you must store the boot disk signature.

 dw 0xAA55 ; boot disk signature

FORMAT OF BOOT SECTOR

Offset (byte) Size (bytes) Description

0 3 Jump

3 59 BIOS Parameter Block

62 448 Your code

510 2 Signature

The BIOS leaves the number of the boot drive in the ‘dl’ register before
transferring control to your boot sector by jumping to 0x0000:0x7C00. All other
registers are undefined.

MEMORY MAP:
This is a map of the first megabyte of memory right after the BIOS has

transferred control to the boot sector code

Address Size Name

0x0000:0
x0000

1024
bytes

Interrupt Vector Table

0x0040:0
x0000

256 bytes BIOS Data Area

0x0050:0
x0000

? Free memory

0x07C0:
0x0000

512 bytes Boot sector code

0x07E0:0
x0000

? Free memory

0xA000:0
x0000

64 Kb Graphics Video Memory

0xB000:0
x0000

32 Kb Monochrome Text Video Memory

0xB800:0
x0000

32 Kb Color Text Video Memory

0xC000:
0x0000

256 Kb1 ROM Code Memory

0xFFFF:
0x0000

16 bytes More BIOS data

POSSIBLE VALUES OF DL WHEN THE BOOT SECTOR CODE STARTS
EXECUTING

Value of dl register Corresponding drive

0x00 First floppy drive

0x01 Second floppy drive

0x80 First hard drive

0x81 Second hard drive

What is actually in the boot sector is the code to execute and possible
some data too. Since the computer will attempt to execute the data in the boot
sector it has to contain valid code.

The task of the boot sector is to prepare for and load the next step of
the operating system. The simplest is to load an image from disk and
transferring control to it immediately. But there is plenty of room left for doing
more things in the boot sector. It could be entering protected mode (which is
demonstrated practically in the project).

The first thing the boot sector should do after the jump is to initialize
the data segment and set up a stack.

If you have some data in your boot sector, i.e. text to display on the
screen, you have to initialize ds to a known value before using it to index the
data with. Using the segment where the BIOS loaded the boot sector
(0x07C0) is very convenient.

INITIALIZING DS REGISTER:

 mov ax, 0x07C0
 mov ds, ax ; setup ds register

SETTING UP A STACK:
The stack can be put on any place, as long as it does not interfere with

the location of the boot sector code or some other areas of reserved memory
areas. You should also pay attention later when you load the kernel image or
maybe relocate the code. I have chosen to place it at 0x9000:0x0000. Without
a stack it can be dangerous to call the BIOS, since you don't know whether it
has its own stack or is using yours. If it is not set up probably it could possibly
corrupt data or code.
 mov ax, 0x9000
 mov ss, ax ; setup a stack
 mov sp, 0x2000 ; 8 kb

INITIALIZING DS REGISTER:

 mov ax, 0x2000
 mov ds, ax ; setup ds to match new location
 jmp 0x2000:0x0000 ; transfer control new location

The bootloader provides the user with two options:

• Load REAL-MODE KERNEL
• Load PROTECTED-MODE KERNEL

TRANSFERRING CONTROL TO THE REAL MODE TEST KERNEL:
The bootloader loads the kernel at the very bottom of the memory.

Therefore the boot sector code needs to be relocated. For the same reason I
also relocate the BIOS Data Area by moving it to 0x7000:0x0000. Then after
the kernel has loaded it can extract the data that it needs from there. The next
step is to reset the disk drive and read the kernel image into memory. The
kernel is stored directly after the boot sector on the floppy disk, it fits into one
sector.

The last step is to transfer the control to the test kernel. This is simply
done using a jmp. But before that I set up the ds register so that the kernel
doesn’t have to do that. I prefer to enter the kernel in a known and stable
state.

mov ax, 0x2000
 mov ds, ax ; setup ds to match new location

jmp 0x2000:0x0000 ; transfer control new location

TRANSFERRING CONTROL TO THE PROTECTED MODE TEST KERNEL:
 In order to switch from real-mode to protected mode:

• CLI: Disable interrupts, because the installed interrupts are all written for
real mode and if an interrupt would occur after the mode switch, your
system would probably reboot.

• Load the GDTR using lgdt, to set up the GDT.
• Execute a mov CR0 instruction to set the PE bit of control register 0.
• Immediately after the mov, cr0 instruction perform a far jump to clear the

instruction prefetch queue, because it's still filled with real mode
instructions and addresses.

• Reload all the segment registers except CS. (which is reloaded by the far
jump)

• Load the Interrupt descriptor tables to make interrupts possible
• STI: Re-enable interrupts.
• Enable the A20 line to prevent memory wrap.
• Disable NMI (non-maskable interrupts)

ENABLE THE A20 ADDRESS LINE:
In order to use the full amount of RAM plugged in your computer you

have to enable the a20 address line. As mentioned earlier enabling a line of
the floppy controller can do this. Setting the appropriate bit can change the
state of this line. This bit is the second bit of the AT keyboard controller output
port (port 064h). So in theory we can enable the a20 address line by simply
setting this second bit.

DISABLING THE NMI:
The NMI belongs to the interrupts issued by the hardware. But a NMI

(Non Maskable Interrupt) is supplied to the processor directly and not via the
8259A PIC. The NMI usually reports a parity error when reading a byte from
memory.

The problem is that you can't disable the NMI with the CLI instruction.
However, there are times you have to disable it (e.g. when switching into
protected mode). A register is provided for this purpose.

The NMI mask register allows to disable (or enable the NMI). This
register is controlled by bit 7 of port 0A0h for the PC/XT and by bit 7 of port
70h for the AT and his successors. Note that in the AT the address register for
the CMOS RAM and the real-time clock are also located at port address 70h.
You should take care of modifying bit 7 only.

4. WHAT IS PROTECTED MODE
The 8088 CPU used in the original IBM PC was not very scalable. In

particular, there was no easy way to access more than 1 megabyte of
physical memory. To get around this while allowing backward compatibility,
Intel designed the 80286 CPU with two modes of operation: real mode, in
which the '286’ acts like a fast 8088, and protected mode (now called 16-bit
protected mode).

Protected mode allows programs to access more than 1 megabyte of
physical memory, and protects against misuse of memory (i.e. programs
can't execute a data segment, or write into a code segment). An improved
version, 32-bit protected mode, first appeared on the '386 CPU’.

DIFFERENCES BETWEEN REAL- AND PROTECTED MODES

REAL MODE
16-BIT
PROTECTED
MODE

32-BIT
PROTECTED
MODE

Segm
ent
base
addre
ss

20-bit (1M byte
range) = 16 *
segment
register

24-bit (16M byte
range), from
descriptor

32-bit (4G byte
range), from
descriptor

Segm
ent
size
(limit)

16-bit, 64K
bytes (fixed)

16-bit, 1-64K
bytes

20-bit, 1-1M
bytes or 4K-
4G bytes

Segm
ent
protec
tion

no yes yes

Segm
ent
registe
r

segment base
adr / 16

selector selector

PROTECTED MODE AND SEGMENTED MEMORY:
The segments are still there, but in 32-bit protected mode, you can set

the segment limit to 4G bytes. This is the maximum amount of physical
memory addressable by a CPU with a 32-bit address bus. Limit-wise, the
segment then "disappears" (though other protection mechanisms remain in
effect). This reason alone makes 32-bit protected mode popular.

DESCRIPTOR:
In real mode, there is little to know about the segments. Each is 64K

bytes in size, and you can do with the segment what you wish: store data in it,
put your stack there, or execute code stored in the segment. The base
address of the segment is simply 16 times the value in one of the segment
registers.

In protected mode, besides the segment base address, we also need
the segment size (limit) and some flags indicating what the segment is used
for. This information goes into an 8-byte data structure called a descriptor:

CODE/DATA SEGMENT DESCRIPTOR

Lo
wes
t
byt
e

By
te
1

B
yt
e
2

By
te
3

Byt
e 4

B
yt
e
5

Byte 6
High
est
byte

Limi
t
7:0

Li
mit
15
:8

Ba
se
7:
0

Ba
se
15:
8

Bas
e
23:1
6

Ac
ce
ss

Flags,
Limit
19:16

Bas
e
31:2
4

This is a 32-bit ('386) descriptor. 16-bit ('286) descriptors have to top
two bytes (Limit 19:16, Flags, and Base 31:24) set to zero. The Access byte
indicates segment usage (data segment, stack segment, code segment, etc.):

ACCESS BYTE OF CODE/DATA SEGMENT DESCRIPTOR

Hi
gh
es
t
bit

Bits
6, 5

B
i
t

4

Bits 3 Bit 2 Bit 1

Lo
we
st
bit

Pr
es
en
t

Privi
lege

1

Execu
table

Expansion
direction/
conforming

Writabl
e/
readabl
e

Ac
ce
ss
ed

Present bit: Must be set to one to permit segment access.

Privilege: Zero is the highest level of privilege (Ring 0), three is the lowest
(Ring 3).

Executable bit: If one, this is a code segment, otherwise it's a stack/data
segment.

Expansion direction (stack/data segment): If one, segment grows
downward, and offsets within the segment must be greater than the limit.

Conforming (code segment): Privilege-related.

Writable (stack/data segment): If one, segment can be written to.

Readable (code segment): If one, segment can be read from. (Code
segments are not writable.)

Accessed: This bit is set whenever the segment is read from or written to.

The 4-bit Flags value is non-zero only for 32-bit segments:

FLAGS NYBBLE

Highest bit Bit 6 Bit 5 Bit 4

Granularity Default Size 0 0

The granularity bit indicates if the segment limit is in units of 4K byte
pages (G=1) or if the limit is in units of bytes (G=0). For stack segments, the
default Size bit is also known as the B (Big) bit, and controls whether 16- or
32-bit values are pushed and popped. For code segments, the D bit indicates
whether instructions will operate on 16-bit (D=0) or 32-bit (D=1) quantities by
default. To expand upon this: when the D bit is set, the segment is USE32,
named after the assembler directive of the same name. The following
sequence of hex bytes ‘B8 90 90 90 90’ will be treated by the CPU as a 32-bit
instruction, and will disassemble as mov eax, 90909090h. In a 16-bit (USE16)
code segment, the same sequence of bytes would be equivalent to

mov ax,9090h
nop
nop

Two special opcode bytes called the Operand Size Prefix and the
Address Length Prefix reverse the sense of the D bit for the instruction
destination and source, respectively. These prefixes affect only the instruction
that immediately follows them.

Bit 4 of the Access byte is set to one for code or data/stack segments.
If this bit is zero, you have a system segment. These come in several
varieties:

Task State Segment (TSS): These are used to simplify multitasking. The
'386 or higher CPU has four sub-types of TSS.

Local Descriptor Table (LDT): Tasks can store their own private descriptors
here, instead of the GDT.

Gates: These control CPU transitions from one level of privilege to another.
Gate descriptors have a different format than other descriptors:

GATE DESCRIPTOR

Lo
we
st
by
te

By
te
1

Byte
2

Byte
3

Byte
4

B
yt
e
5

Byt
e 6

Hig
he
st
byt
e

Off
set
7:0

Off
set
15:
8

Sele
ctor
7:0

Selec
tor
15:8

Word
Coun
t 4:0

A
cc
es
s

Off
set
23:
16

Off
set
31:
24

Note the Selector field. Gates work through indirection, and require a
separate code or TSS descriptor to function.

ACCESS BYTE OF SYSTEM SEGMENT DESCRIPTOR

Highest bit Bits 6, 5 Bit 4 Bits 3, 2, 1, 0

Present Privilege 0 Type

SYSTEM SEGMENT TYPES

Type Segment function Type Segment function

0 (Invalid) 8 (Invalid)

1 Available '286 TSS 9 Available '386 TSS

2 LDT 10
(Undefined,
reserved)

3 Busy '286 TSS 11 Busy '386 TSS

4 '286 Call Gate 12 '386 Call Gate

5 Task Gate 13
(Undefined,
reserved)

6 '286 Interrupt Gate 14 '386 Interrupt Gate

7 '286 Trap Gate 15 '386 Trap Gate

For now, TSSes, LDTs, and gates are the three main types of system
segment.

DESCRIPTORS
They are stored in a table in memory: the Global Descriptor Table

(GDT), Interrupt Descriptor Table (IDT), or one of the Local Descriptor Tables.
The CPU contains three registers: GDTR, which must point to the

GDT, IDTR, which must point to the IDT (if interrupts are used), and LDTR,
which must point to the LDT (if the LDT is used). Each of these tables can
hold up to 8192 descriptors.

SELECTOR:
In protected mode, the segment registers contain selectors, which

index into one of the descriptor tables. Only the top 13 bits of the selector are
used for this index. The next lower bit chooses between the GDT and LDT.
The lowest two bits of the selector set a privilege value.

HOW TO ENTER PROTECTED MODE
Entering protected mode is actually rather simple.
You must:

• Create a valid Global Descriptor Table (GDT)
• (Optional) create a valid Interrupt Descriptor Table (IDT)
• Disable interrupts
• Point GDTR to your GDT
• (Optional) point IDTR to your IDT
• Set the PE bit in the MSW register
• Do a far jump (load both CS and IP/EIP) to enter protected mode

(load CS with the code segment selector)
• Load the DS and SS registers with the data/stack segment selector
• Set up a pmode stack
• (Optional) enable interrupts

SOURCE CODE SECTION

BOOTSECTOR AND BOOTLOADER:

;--
; BOOT SECTOR CODE by Weqaar A. Janjua
;--

; to assemble: nasm bootsec.asm -f bin -o bootsec.bin
; to transfer to disk: partcopy bootsec.bin 0 200 -f0
[bits 16]
[org 0]
 jmp short start
 nop ; required nop as some BIOS'es need it
;--
; BIOS PARAMETER BLOCK (definitions for protected mode)
;--
; FIELD SIZE (bytes)
 osname db 'RAPTOR ' ; 8
 bytespersector dw 0x200 ; 2
 sectorspercluster db 1 ; 1
 reservedsectors dw 1 ; 2
 numberoffats db 2 ; 1
 rootdirectoryentries dw 0x00E0 ;224 ; 2
 totalsectors dw 0x0B40 ;2880 ; 2
 mediadescriptor db 0xF0 ;1.44 MB ; 1
 sectorsperfat dw 2 ; 2
 sectorspertrack dw 0x12 ; 2
 numberofheads dw 2 ; 2
 hiddensectors dd 0 ; 4
 totalsectorshuge dd 0 ; 4
 drivenumber db 0 ; 1
 reserved db 0 ; 1
 signature db 0x29 ; 4
 volumeid dd 0 ; 1
 volumename db 'NONAME ' ; 1
 filesystemtype db 'FAT12 ' ; 8

;--
; CODE
;--

; --
; Functions used in the boot-loading process
; --

start:
 cli ; diable interrupts
 mov ax, 0x07C0
 mov ds, ax ; setup ds register
 mov ax, 0x9000
 mov es, ax ; setup a stack
 mov sp, 0x2000 ; 8 kb
 sti ; enable interrupts
 mov [bootdrive], dl ; save boot drive

; relocate code
 mov ax, 0x8000
 mov es, ax
 mov di, 0 ; destination address
 mov si, 0 ; source address.
 mov cx, 512 ; length is 512 bytes
 cld ; direction forward
 rep movsb ; move the boot sector
 jmp 0x8000:relocation_ok ; transfer control to new location

relocation_ok:
; relocate bios data area
 mov ax, 0x7000
 mov es, ax
 mov di, 0 ; destination
 mov ax, 0x0040
 mov ds, ax
 mov si, 0 ; source
 mov cx, 256 ; length is 256 bytes
 cld ; set direction forward
 rep movsb ; move bios data area
 mov ax, 0x8000
 mov ds, ax ; setup ds to match new location

call_user:
 mov si, ask_user
 call bios_print_string
 mov si, option1
 call bios_print_string
 mov si, option2
 call bios_print_string
 jmp o_a

o_a:
 mov ah, 0 ; wait for key
 int 016h
 cmp al, 'p'
 je s_p
 jne s_r
 ret

s_p: ; protected mode section
 call bios_clear_screen
 ; load kernel image
 call bios_reset_drive
 jnc drive_ok
 mov si, driveerr
 call bios_print_string
 call reboot

drive_ok:
 mov ax, 0x200
 mov es, ax
 mov bx, 0 ; kernel image destination
 mov al, 1 ; read 1 sector
 mov cl, 2 ; starting at sector 2

 call bios_read_sectors

; ENABLE THE A20 LINE:
;In order to use the full amount of RAM plugged in your computer you have to enable the a20
addressline. This can be done by enabling a line of the floppy controller. The state of this line
can be changed by setting the appropriate bit. This bit is the second bit of the AT keyboard
controller output port (port 064h). So in theory we can enable the a20 address line by simply
setting this second bit.

 cli ; disable interrupts
 mov bl, 0xd0 ; read current status command
 call kbd_send_ctrl_cmd
 call kbd_read_data
 or al, 2 ; set the a20 enable bit
 push ax
 mov bl, 0xd1 ; write current status command
 call kbd_send_ctrl_cmd
 pop bx
 call kbd_write_data ; write the new status
 mov bl, 0xd0 ; read current status command
 call kbd_send_ctrl_cmd
 call kbd_read_data ; read the current status
 and al, 2
 sti ; enable interrupts
 jnz a20_ok
 mov si, a20err
 call bios_print_string
 call reboot

a20_ok:
; setup global descriptor table
 mov ax, 0
 mov es, ax
 mov di, 0x800 ; destination
 mov si, gdt ; source
 mov cx, 24 ; length
 cld ; forward direction
 rep movsb ; move gtd to its new location
 lgdt [gdtptr] ; load gdt register

; Disable ALL interrupts
 cli ; disable interrupts
 mov al, 11111111b ; select to mask of all IRQs
 out 0x21, al ; write it to the PIC controller

;Disable NMI
 in al, 0x70 ; read a value
 or al, 10000000b ; set the nmi disable bit
 out 0x70, al ; write it back again

; Enter protected mode
 mov eax, cr0
 or al, 1 ; set protected mode bit
 mov cr0, eax

; Transfer control to kernel
 mov ax, 0x10
 mov ds, ax ; load global data selector into ds
 jmp 0x08:0x2000 ; transfer control to test kernel

ret
;--
; start of realmode kernel proc
;--
s_r: ; real-mode section
 call bios_clear_screen
 call bios_reset_drive
 jnc reset_ok
 mov si,driveerr
 call bios_print_string
 call reboot

reset_ok:
 mov al, 1 ; sector count
 mov cl, 3 ; start sector
 mov ax, 0x2000
 mov es, ax
 mov bx, 0 ; kernel image destination
 call bios_read_sectors
 jmp 0x2000:0x0000 ; transfer control to kernel
 call call_user
ret

;--
; END of realmode kernel proc
;--

;--
; Functions
;--

bios_print_string:
; input : ds:si points to zero terminated string
 cld ; direction forward
 lodsb ; get next character
 cmp al, 0
 jz bios_print_string_done
 mov ah, 0x0E ; write character as tty function
 int 0x10 ; call bios video services
 jmp bios_print_string

bios_print_string_done:
 ret

bios_clear_screen:
 mov al, 3 ; select video mode 3 - color text
 mov ah, 0 ; set video mode function
 int 0x10 ; call bios video services
 ret

reboot:
 mov si, pm
 call bios_print_string
 mov ah, 0 ; read keypress function
 int 0x16 ; call bios keyboard services
 jmp 0xFFFF:0x0000

bios_reset_drive:
 mov ah, 0 ; reset drive function
 int 0x13 ; call bios disk i/o
 ret

bios_read_sectors
; input : es:bx = address of destination
; al = sector count
; cl = sector start number
 mov ah, 0x02 ; read sectors function
 mov ch, 0 ; cylinder 0
 mov dl, [bootdrive] ; drive number
 mov dh, 0 ; head number
 int 0x13 ; call bios disk i/o
 jc bios_read_sectors
 ret

kbd_wait_cmd:
 in al, 0x64 ; read the controller status port
 and al, 2 ; check if the controller is ready
 jnz kbd_wait_cmd ; to accept the next command (or
 ret ; piece of data)

kbd_wait_data:
 in al, 0x64 ; read the controller status port
 and al, 1 ; check if the data is ready
 jz kbd_wait_data
 ret

kbd_send_ctrl_cmd:
; input : bl = command
 call kbd_wait_cmd
 mov al, bl
 out 0x64, al ; send the command to the control
 ret ; register

kbd_read_data:
; output : al = data
 call kbd_wait_data
 in al, 0x60 ; read data from input/output port
 ret

kbd_write_data:
; input bl = data
 call kbd_wait_cmd
 mov al, bl
 out 0x60, al ; write data to input/output port
 ret

;--
; data
;--

; messages (with carriage return and line feed and zero terminated)
bm_p db 'PROTECTED', 0
bm_r db 'REAL', 0

 pm db 'rb', 0 ; reboot message
 driveerr db 'E', 0 ; DRIVE ERROR
 a20err db 'E', 0 ; A20 ERROR

ask_user db 'SELECT:',13,10,0
 option1 db 'p',13,10,0
 option2 db 'r',13,10,0
 bootdrive db 0

; global descriptor table
 ; null selector (required)
 gdt dw 0, 0, 0, 0

 ; kernel code selector
 dw 0xffff ; segment limit (4 gb total)
 dw 0 ; base address (bits 0-15)
 db 0 ; base address (bits (16-24)
 db 10011000b ; dpl 0, code (execute only)
 db 11001111b ; granlurarity (4k), 32-bit, limit high nibble = f
 db 0 ; base address (bits 24-32)

 ; kernel data selector
 dw 0xffff ; segment limit (4 gb total)
 dw 0 ; base address (bits 0-15)
 db 0 ; base address (bits (16-24)
 db 10010010b ; dpl 0, data (read/write)
 db 11001111b ; granlurarity (4k), 32-bit, limit high nibble = f
 db 0 ; base address (bits 24-32)

 gdtptr dw 0x7ff ; limit (256 slots)
 dd 0x800 ; base (physical address)

;--
; signature
;--

 times 510-($-$$) db 0 ; padding - fill the empty space with 512 bytes !!
 dw 0xAA55 ; boot signature

;-------END OF BOOTLOADER & BOOTSECTOR CODE----

REAL-MODE TEST KERNEL:

[bits 16]

start:
call ClrScr
mov ah,13h
mov al,3 ; write mode (advance cursor, ASCII+attribute string)

mov bh,0 ; video page
mov cx,7 ; string length
mov dh,1 ; starting row
mov dl,1 ; starting col
push cs
pop es
mov bp,kernelmsg
int 10h

 call reboot

;--
; functions
;--

gotoxy:
mov ah,02h ; select video service 2 (position cursor)
mov bh,0 ; stay with video page 0
int 10h

ret

ClrScr:
pusha
mov cx,0
mov dx,LRXY

ClrWin:
mov al,0

ScrlWin:
mov bh,07h

video6:
mov ah,06h
int 10h
popa

ret

bios_print_string:
; input : ds:si points to zero terminated string
 cld ; direction forward
 lodsb ; get next character
 cmp al,0
 jz bios_print_string_done
 mov bh,0 ; setting video page (0)
 mov bl,14h ; blue background and red font
 mov ah,0x0E ; write character as tty function
 int 0x10 ; call bios video services
 jmp bios_print_string

bios_print_string_done:
 ret

reboot:
mov ah,13h
mov al,3 ; write mode (advance cursor, ASCII+attribute string)
mov bh,0 ; video page

mov bl,02 ; attribute (black on green)
mov cx,23 ; string length
mov dh,2 ; starting row
mov dl,2 ; starting col
push cs
pop es
mov bp,presskeymsg
int 10h

 mov ah, 0 ; read keypress function
 int 0x16 ; call bios keyboard services

call do_reset
ret

do_reset:
 jmp 0xFFFF:0x0000

ret
;--
; data
;--

kernelmsg db 'S', 01, 'U', 02, 'C', 03, 'C', 04, 'E', 05, 'S', 06, 'S', 07, 13, 10
presskeymsg db 'P',01,'R',02,'E',03,'S',04,'S',05,' ',06,'A',07,'N',08,'Y',09,'
 ',10,'K',11,'E',12,'Y',13,' ',14,'T',15,'O',16,'
 ',17,'R',18,'E',19,'B',20,'O',21,'O',22,'T',13,10
LRXY dw 184Fh
times 512-($-$$) db 0 ; padding

;---------END OF REAL-MODE TEST KERNEL CODE---------

PROTECTED-MODE TEST KERNEL:

[bits 32]
[org 0x2000]
 mov ax, 0x10
 mov ds, ax
 mov es, ax
 mov esi, kernelmsg
 call pmode_print_string
 mov esi, presskeymsg
 call pmode_print_string

dummy:
 jmp dummy
;--
; function
;--
 xposition db 0
 yposition db 1

pmode_print_character:
; input al : character
; ah : attribute
 pushad ; save registers
 cmp al, 10 ; line feed

 jnz not_line_feed
 add byte [yposition], 1
 jmp pmode_print_character_done

not_line_feed:
 cmp al, 13 ; carriage return
 jnz not_carriage_return
 mov byte [xposition], 0
 jmp pmode_print_character_done

not_carriage_return:
 mov ecx, eax ; save character and attribute
 mov ebx, 0
 mov bl, [xposition]
 shl bl, 1 ; calculate x offset
 mov eax, 0
 mov al, [yposition]
 mov edx, 160
 mul edx ; calculate y offset
 mov edi, 0xb8000 ; start of video memory
 add edi, eax ; add y offset
 add edi, ebx ; add x offset
 mov ax, cx ; restore character and attribute
 cld ; forward direction
 stosw ; write character and attribute
 add byte [xposition], 1

pmode_print_character_done:
 call hardware_move_cursor
 popad ; restore registers
 ret

pmode_print_string:
; input ds:esi = points to zero terminated string
 lodsb
 cmp al, 0
 jz pmode_print_string_done
 mov ah, 0x0F ; white text, black background
 call pmode_print_character
 jmp pmode_print_string

pmode_print_string_done:
 ret

hardware_move_cursor:
 pushad ; save registers
 mov ebx, 0
 mov bl, [xposition] ; get x offset
 mov eax, 0
 mov al, [yposition]
 mov edx, 80
 mul edx ; calculate y offset
 add ebx, eax ; calculate index
 ; select to write low byte of index
 mov al, 0xf
 mov dx, 0x03d4

 out dx, al
 ; write it
 mov al, bl
 mov dx, 0x03d5
 out dx, al
 ; select to write high byte of index
 mov al, 0xe
 mov dx, 0x03d4
 out dx, al
 ; write it
 mov al, bh
 mov dx, 0x03d5
 out dx, al
 popad ; restore registers
 ret
;--
; data
;--

 kernelmsg db 'Protected mode test kernel loaded successfully', 13, 10, 0
 presskeymsg db 'Please remove disk and reboot', 0
 times 512-($-$$) db 0 ; padding

;--------END OF PMODE TEST KERNEL CODE------

;--
; END of code
;--

